
Cassidy Henry¹, Pooja Moolchandani¹, Kimberly A. Pollard¹, Claire Bonial¹, Ashley Foots¹, Ron Artstein², Clare Voss¹, David Traum² and Matthew Marge¹ 2 USC Institute for Creative Technologies, Playa Vista, CA 90094 USA 1 U.S. Army Research Laboratory, Adelphi, MD 20783 USA email: cassidy.r.henry.ctr@mail.mil

Introduction

- Human language is a natural means of communication when interacting with robots, and allows for effective teaming
 - allows bi-directional information exchange, with the benefit of familiarity and flexibility for humans
- *Focal task:* Collaborative search-and-navigation with remote human teammate and on-site robot, "Fido"
- Multi-phase, iterative human-robot situated dialogue collection effort, the "Bot Language" Project

- Wizard-of-Oz set-up with **two human wizards** standing in as robot AI to collect data for training an initial automated system.
 - **Dialogue Manager:** intermediary, sends typed communication
 - **Robot Navigator:** moves robot based on DM instruction
- Alternate between **physical and simulated robot**, because experiments with physical robots are much more labor intonoivo

Inter	nsive.					Screens	Wiz-Commander	Wiz-RN	Map-specific								
Phase	DM	RN	Enviro	Gaze/ MultiSense	# Participants	Task	intro	also_ready	ready	tech issues	standby	hold push-to-talk reminder	task complete				
Expt 1	NoZ, Typed	WoZ, Joystick	Real	No	10	Feedback	executing	sent	done		hear you	calibrating	calibration complete	yes	no	ok	reponse: unsure
Expt 2	WoZ, GUI	WoZ, Joystick	Real	No	10		correct	don't think so	think so	good job	hello and thanks	thank you	hi				
Expt 3	WoZ, GUI	WoZ, Joystick	Simulated	Yes	30+	Clarify Target	unsure of object referred to	unsure object meant	describe w color, size, position?	describe another way?	unsure where to go	unsure of doorway	unsure doorway meant	unsure of room	unsure of wall	which doorway?	which room?
Expt 4	Automated	Automated	Simulated	Yes	30+		which wall?	which OBJECT?	one to my right?	on the right?	one to left?	on the left?	one closest?	one ahead?	direct left or ahead left?	direct right or ahead right?	
Expt 5	Automated	Automated	Real	Yes	10+			OBJECT	light?							aneau nynt?	
• Two focused efforts to address challenges of data collection: • Utterance data currently being annotated and analyzed to																	

I wo focused efforts to address challenges of data collection: corpus creation of interactions and building simulated experimental setup

APPROVED FOR PUBLIC RELEASE. UNCLASSIFIED

Towards Efficient Human-Robot Dialogue Collection: ARL Moving Fido into the Virtual World

Challenges in Human-Robot Data Collection

- Large amounts of data are needed to capture natural variation in language as well as sufficient training data for automation
- Requires substantial resources of human labor, environment, time, and network/operation for just one participant at a time

Annotating Human-Robot Dialogue Data

- Data from Experiment 1: basis for corpus - 10 participants, ~10.5 hours of audio, and 1668 commands
- Four message streams (two audio speech streams, two typed streams) from three speaker roles: Commander (CMD), Robot Navigator (RN), and Dialogue Manager (DM)

Commander DM->CMD

Which way should I turn?

turn right forty five degrees		
		turn rigł
	executing	
	sent	
go to the first orange cone		
on your right		
and send me a photo		
		move to
		cone on
	executing	
	sent	
are you able to move that		
orange cone in front of you		
	No, I'm not able to manipulate objects.	

- Initial corpus processing transcribing CMD and RN speech and **alignment** of the four streams to enable analysis
- Annotations to mark **dialogue moves**, structure, and relations
- DM's typed responses from Experiment 1 clustered and **mapped** to GUI buttons for use by DM in Experiment 2:

automate dialogue management and language understanding processing modules

Robot Navigator DM->RN

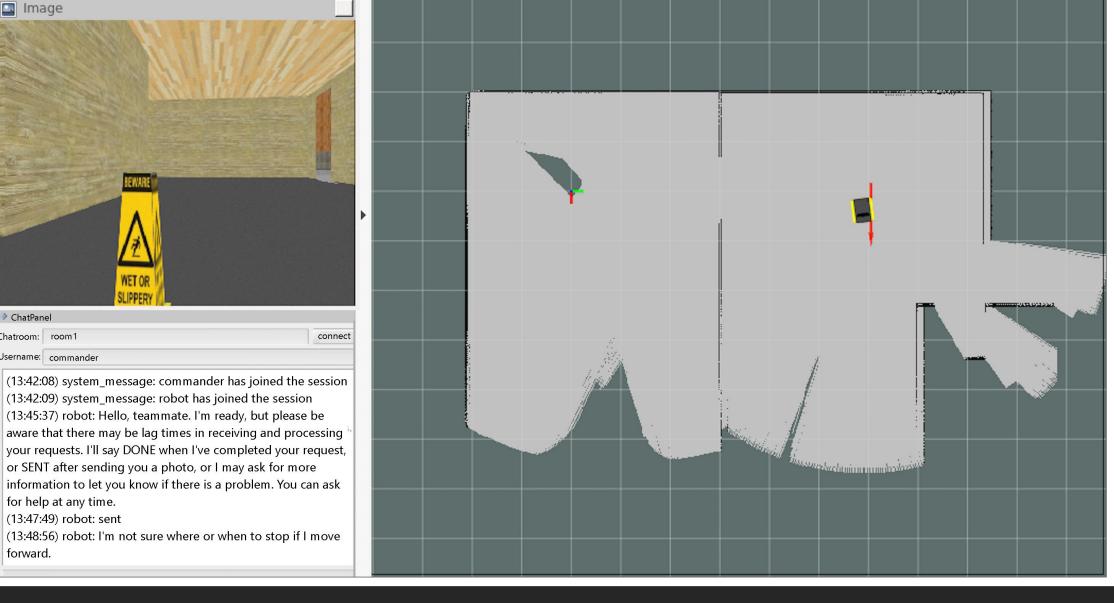
ht 45, image

done

the first orange right, image

done

Bringing Fido into the Virtual World


- greater data collection
- data transition between physical and virtual robots

High-Fidelity Virtual Clearpath Robotics Jackal equipped with same sensors as physical platform

Map Building: SLAM **RGB** Virtual Camera provides Robot POV Map Population: LIDAR Point and click navigation was included alongside virtual robot.

In simulation, CMD will perform the same tasks and see a screen using the same layout as in earlier experiments (*right*)

Advantages of Simulation

- human labor by simplifying controls and setup
- environments

- interact and communicate with robots

Simulation reduces resource requirements and facilitates

Developed on same OS as robot to facilitate comparisons and

physical environment created using ROS and Gazebo

Along with the GUI, this reduces wizard labor to one person

Freedom from resource limitations including reduction of

Rapid, massive parallel data collection in multiple operational

Eliminates risk of physical damage to robot or environment

Conclusion

Bot Language aims to provide more natural ways for humans to

To facilitate this goal through our multi-phase experimental process, we seek to iteratively move towards automation of tasks involved in data collection and physical experiment runs

Because our simulated robot runs on the same platform as the physical robot, we are able to validate simulated results in a physical environment after completed data collection